Биология. Генетика пола у растений

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Определение окончательного пола у человека начинается с определения генетического (хромосомного) пола; это наиболее важный этап, но он еще не определяет пол окончательно; известен ряд патологических состояний, при которых, несмотря на хромосомный пол, дальнейшее развитие пола происходит в противоположном направлении.

McClung (1902) был первым исследователем, установившим взаимосвязь между хромосомами и полом; он обнаружил в клетках насекомых одну добавочную хромосомную пару и пришел к выводу, что она определяет пол самца. С его предположением долго не соглашались. Однако через несколько лет Stevens (1905) и независимо от него Wilson (1905), которые также занимались изучением клеток насекомых, обнаружили в отдельных сперматоцитах первого порядка одну особую хромосомную пару (рис. 1); в настоящее время нам известно, что описанная ими хромосомная пара соответствует ХУ - паре половых хромосом. Этими же авторами описано, что в процессе редукционного деления сперматоцитов одна из хромосом проникает в одну, а вторая в другую дочернюю клетку. Таким образом ими установлено, что образуются два сперматоцита, в одном из которых содержится X, а во втором Y-хромосома. Они пришли к выводу, что XX - определяет женский пол, a XY - мужской пол. Эта концепция получила всеобщее признание лишь через 20 лет.

Рис. 1. Нормальный процесс сперматогенеза.


Рис. 2. Нормальный процесс овогенеза.

Благодаря исследованиям Tjio и Levan (1956), Ford и Наmerton (1956) стало известно, что в клетках человека содержится 46, а не 48 хромосом, как это считалось раньше. Из 46 хромосом 22 пары являются аутосомами, а одна пара половыми хромосомами. В клетках женской особи имеется сочетание XX, а в клетках мужской - сочетание XY. Когда в процессе гаметогенеза заканчивается редукционное деление, в каждую клетку переходит одна хромосома; таким образом, в каждой яйцеклетке содержится по одной Х-хромосоме, тогда как в половине сперматозоидов содержится по одной X, а во второй половине по одной Y-хромосоме (рис. 2).

У некоторых видов насекомых хромосомный набор отличается от описанного выше хромосомного набора, характерного для человека и большинства позвоночных. У других видов насекомых и позвоночных в сперматозоидах содержится Х- или О-хромосома. Если в яйцеклетку проникает сперматозоид, содержащий Х-хромосому, образуется комбинация XX, характерная для женской особи; если же яйцеклетка оплодотворяется сперматозоидом, несущим О-хромосому, возникает комбинация ХО, характерная для мужской особи.

У птиц и некоторых видов бабочек положение противоположное: в их яйцеклетках содержатся две разновидности хромосом, а в сперматозоидах только одна. Оплодотворение у этих видов животных происходит следующим образом: в клетках самок содержатся XX- или ХО-хромосомы, а в клетках самцов ХХ-хромосомы; если сперматозоид оплодотворяет яйцеклетку, несущую Х-хромосому, в зиготе образуется комбинация XX, характерная для мужской особи; если сперматозоид оплодотворяет яйцеклетку, содержащую Y-хромосому, в зиготе образуется комбинация ХУ половых хромосом, характерная для женской особи. Нужно отметить, что у животных, у которых пол потомка определяется женской гаметой, половые хромосомы самок принято обозначать буквами ZW, а половые хромосомы самцов - буквами ZZ. У водяной лягушки (rana esculenta) имеется XX- и ХY-хромосомный набор, а у остальных видов лягушек - ZW- и ZZ-хромосомный набор.

В связи с изучением наследственной передачи пола у человека возник весьма существенный вопрос: определяется ли женский пол наличием двух Х-хромосом или отсутствием Y-хромосомы или, наоборот, определяется ли мужской пол наличием только одной Х-хромосомы или присутствием Y-хромосомы? Долгое время господствовал взгляд, что мужской пол определяется наличием только одной Х-хромосомы. Исследования, проведенные за последние 10 лет и особенно изучение случаев синдрома Klinefelter, убедительно показали, что мужская особь определяется благодаря присутствию Y-хромосомы и поэтому половая железа мужской особи (яичко) вырабатывает андрогенный гормон. Присутствие Х-хромосомы вряд ли влияет на определение пола. В главе о гермафродитизме будет указано, что у больных с синдромом Klinefelter имеется хромосомный набор XXY и что эти больные обладают мужским фенотипом. Поиски причин имеющегося ранее неверного представления об определении пола увели бы нас очень далеко; достаточно напомнить, что все авторы ранее исходили из результатов исследования хромосом плодовой мухи (Drosophila), у которой видовое число и набор хромосом иные, чем у человека.

Процесс передачи пола по наследству у человека изображен схематически на рис. 1, 2 и 3.


Рис. 3. Определение хромосомного пола.

Хроматиновый генетический пол . Половые различия определяются при оплодотворении по различному хромосомному содержанию гамет. При слиянии двух гетеросомных частей X хромосом (женский субъект) получается хроматиновая масса, определяющаяся как шаровидное скопление, расположенное под ядерной оболочкой слущенного эпителия слизистой влагалища и щек. В зрелых нейтрофилах это скопление располагается в виде «барабанной палочки». У мужчин этих ядерных образований нет, так как Y хромосома мала, а комбинация XY имеет малые размеры.

Обычный мазок крови окрашивают но Гимза - Романовскому.

Подсчитывают число «барабанных палочек» в зрелых нейтрофилах. Эти ядерные выросты выступают по направлению к периферии клетки. Величина каждой из них 1,5 микрона, головка округленная. В каждой клетке встречается не более одной «барабанной палочки». Их следует отличать от зернистых, булавовидных и палочкоядерных выростов в нейтрофилах. Такие выросты, хотя и встречаются чаще у женщин, однако не играют роли в установлении генетического пола. У лиц мужского пола число «барабанных палочек» колеблется от 0 до 4 на 500 нейтрофилов. У лиц женского пола их не менее 6 на 500 лейкоцитов.

Определение генетического пола по слущенному эпителию слизистой полости рта .

Техника. Сухим стерильным шпателем из стекла, дерева или металла делают соскоб внутренней стенки щеки. Материал помещают на предметное стекло и прикрывают покровным стеклом. В течение 1-2 часов фиксируют раствором равных частей 95%-ного этилового спирта и сернокислого эфира. Затем производят окраску следующими реактивами:
мин,
70%-ный этиловый спирт.............2
50%-ный этиловый спирт............2
Дистиллированная вода..............2
Крезил-виолета 1%-ный водный раствор. . . . 5
95-%ный этиловый спирт.............5
95-%ный этиловый спирт........... .5
Абсолютный этиловый спирт...........5
Ксилол......................5
Ксилол.....................5
Канадский бальзам................ 5
Половой хроматин из соскоба эпителия слизистой поверхности щек состоит из клубочковых образований густо окрашенных и расположенных периферически, под самой ядерной оболочкой.

У лиц женского пола они встречаются в каждой пятой клетке, у лиц же мужского пола их число 0-4 на сто клеток.

Чтобы установить генетический пол, нужно рассмотреть не менее 25 клеток, причем учитываются только клетки с большими, круглыми, светло окрашенными ядрами, без складок на теле ядра, не покрытом соседними клетками, и без скоплений микрофлоры, которая затемняет строение ядра.

Определение генетического пола по слущенному эпителию слизистой влагалища . Приготовляют и окрашивают влагалищный мазок. У генетических женских субъектов половой хроматин представляет собой густо окрашенные шаровидные образования, которые располагаются под оболочкой ядра. У лиц генетического мужского пола таких ядерных образований нет.

Наиболее простым методом является определение полового хроматина в соскобе слизистой щек, вагинальные мазки требуют наличия хотя бы зачаточного влагалища, а мазки крови более трудоемки в связи с длительностью подсчета нейтрофилов, особенно у лиц генетического мужского пола.

Определение генетического пола позволяет установить наличие несоответствия между половыми органами и генетическим полом, а также нарушения, с одной стороны, соматического пола, а с другой,-генетического пола или половых органов.


Пол организмов, совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится в конечном итоге к оплодотворению. При этом мужские и женские половые клетки - гаметы сливаются зиготу, из которой развивается новый организм. В зиготе объединяются 2 гаплоидных (одинарных) набора хромосом материнской и отцовской гамет. В половых клетках нового организма образуются гаплоидные наборы уже перекомбинированных отцовских и материнских хромосом (в результате обмена участками гомологичных родительских хромосом - кроссинговера - и случайного их расхождения по дочерним клеткам во время мейоза). Поэтому в обоеполой популяции постоянно возникает множество генетически разных особей, что создаёт благоприятные условия для естественного отбора более приспособленных форм. В этом заключается основное преимущество полового размножения перед бесполым. Половое размножение преобладает у животных и высших растений; оно встречается и у многих микроорганизмов (конъюгация у бактерий сопровождается частичным обменом наследственным материалом - нитями ДНК). Половой процесс у одноклеточных организмов не требует значительной дифференциации П. (одна и та же клетка может быть и клеткой тела, и половой). У многоклеточных диплоидных организмов возникли специальные гаплоидные половые клетки: крупные и малоподвижные или неподвижные у женского, мелкие и обычно подвижные - у мужского. У большинства растений и лишь у некоторых животных оба типа гамет производятся одной особью, у большинства животных - разными особями, которые в связи с этим строго разделяются соответственно на самок и самцов. Помимо продуцирования клеток различного пола., самцы и самки различаются рядом морфологических и физиологических признаков, а также половым поведением, которые обеспечивают слияние половых клеток.

Определение пола

Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки мужского и женского пола. У обоеполых растений и некоторых гермафродитных животных женские и мужские репродуктивные органы и половые клетки развиваются из генетически одинаковых клеток под влиянием внутренних условий (по отношению к отдельным клеткам их можно рассматривать как внешние). Механизм переключения клеток на развитие в одном случае женских, в другом мужских репродуктивных органов полностью не раскрыт. В редких случаях у раздельнополых видов потенциально бисексуальные зиготы развиваются в самок или самцов под влиянием внешних условий. Например, у морского кольчатого червя бонеллия личинка, поселяясь на хоботке самки, развивается в самца, а на дне моря - в самку. У растения Arisaema japonica из крупных клубней, богатых питательными веществами, развиваются растения с женским цветками, а из мелких клубней - с мужскими. Определение пола под влиянием внешних условий называется фенотипическим, или модификационным.

Шире распространено генетическое определение пола. В этом случае зигота во время оплодотворения также получает потенциальные возможности для развития признаков обоих полов. Однако под влиянием генетических факторов в одной половине зигот пересиливает тенденция развития мужского пола, а в другой - женского. Специальный хромосомный механизм обеспечивает передачу одной половине потомства генов женского пола, а другой - генов мужского пола. В начале 20 в. было установлено, что у самцов некоторых видов насекомых в диплоидных (с двойным набором хромосом) клетках наряду с парами гомологичных хромосом имеется одна непарная хромосома. Самка же имеет две такие хромосомы. У самцов насекомых др. видов все хромосомы парные, но в одной из пар они морфологически несходные. Эти хромосомы, причастные к определению пола., назвали половыми а остальные - аутосомами. Половые хромосомы были обнаружены у многих раздельнополых организмов. Половую хромосому самца, повторяющуюся у самок, назвали Х-хромосомой, а не повторяющуюся - Y-хромосомой. Сочетание половых хромосом самца обозначают формулой X0 или XY, а самки - XX. Самцы с одной половой хромосомой продуцируют в равном количестве гаметы с Х-хромосомой и гаметы, лишённые её, т. е. с одним лишь гаплоидным набором аутосом (А); самки - гаметы только с Х-хромосомой. После случайного слияния мужских и женских гамет половина образовавшихся зигот будет иметь две Х-хромосомы (XX), а др. половина - только одну Х-хромосому. Первые станут самками, вторые - самцами.

Самцы с разными половыми хромосомами продуцируют в равном количестве гаметы, имеющие Х-хромосому, и гаметы, имеющие Y-хромосому. Женские гаметы этого вида генетически одинаковы - все они несут по одной Х-хромосоме. В результате половина яйцеклеток будет оплодотворена сперматозоидами с Y-хромосомой, а др. половина - с Х-хромосомой. Первые зиготы, имеющие структуру XY, разовьются в особей мужского пола, вторые - с XX - в особей женского пола. Самцы с одной Х-хромосомой или с двумя разными (XY) хромосомами имеют гетерогаметный пол, самки с ХХ-хромосомами - гомогаметный пол. У многих животных, наоборот, самки имеют гетерогаметный пол. Их половые хромосомы обозначают буквами Z и W или XY, а половые хромосомы гомогаметных самцов - ZZ или XX. У млекопитающих, нематод, моллюсков, иглокожих и у большинства членистоногих гетерогаметен мужской пол. У насекомых и рыб гетерогаметность наблюдается как у мужского, так и у женского пол. Гетерогаметность женского пола свойственна птицам, пресмыкающимся и некоторым земноводным.

Бисексуальные потенции, свойственные зиготе, обусловлены генами, локализованными в аутосомах и проявляющимися только под контролем др. генов - реализаторов пола. Именно эти гены открывают путь в одном случае генам, способствующим образованию женского пола, в другом - генам, обусловливающим развитие мужского пола. При генетическом определении пола по типу X0, XX реализаторы женского пола локализованы в Х-хромосомах, а мужского - в аутосомах. При сочетании одной дозы реализаторов женского П., локализованных в одной Х-хромосоме, с диплоидным набором реализаторов мужского П., локализованных в аутосомах, развивается мужской пол И только 2 дозы реализаторов женского пола, локализованные в 2 Х-хромосомах, пересиливают потенцию развития мужского пола и тем самым обусловливают женский пол. У человека полоопределяющую роль играет Y-хромосома. В аномальных случаях она сочетается с 2, 3 и даже 4 Х-хромосомами при нормальном наборе аутосом. Хотя это и приводит к патологическим отклонениям, однако все особи с такими наборами хромосом бывают мужского пола. Полоопределяющая роль Y-хромосом отмечена у многих видов животных, а среди растений - у дрёмы луговой. У дрозофилы Y-хромосома почти не содержит генов, т. е. наследственно инертна; реализаторы женского пола. локализованы в Х-хромосоме, реализаторы мужского П. - в аутосомах. Развитие пола контролируется отношением Х-хромосом к набору аутосом (Х: А), условно принятым у самки за единицу (2Х:2А = 1): это отношение у самца равно 0,5 (Х:2А = 0,5). Увеличение этого отношения (полового индекса) свыше единицы приводит к чрезмерному развитию женских половых признаков («сверхсамки»), уменьшение же ниже 0,5 способствует появлению самцов с более выраженными мужскими признаками («сверхсамцы»). Особи с половым индексом 0,67 и 0,75 имеют промежуточное развитие признаков обоих полов и называют интерсексами. Явление интерсексуальности демонстрирует бисексуальную потенцию наследственной информации, передаваемой всем потомкам.

Механизм генетического контроля над развитием половых признаков может быть внутри- и межклеточным. Внутриклеточное определение П. не связано с образованием половых гормонов (например, у насекомых), и действие генов, определяющих П., ограничено клетками, в которых эти гены функционируют. При этом в одном организме могут нормально развиваться, не влияя друг на друга, участки тела с женскими и мужскими признаками При межклеточном определении пола., характерном для млекопитающих и птиц, под контролем генов вырабатываются половые гормоны , которые, проникая во все клетки организма, обусловливают фенотипическое развитие признаков соответствующего пола. Различают прогамное, сингамное и эпигамное определение пола. Прогамное определение пола происходит до оплодотворения яйца, например дифференцировка яйцеклеток на быстро и медленно растущие. Первые становятся крупными, и из них после оплодотворения развиваются самки, вторые отличаются меньшими размерами и дают самцов, хотя оба вида яйцеклеток генетически одинаковы. Сингамное определение пола происходит во время оплодотворения, но на разных стадиях этого процесса. У некоторых видов с мужской гетерогаметией и физиологической полиспермией (оплодотворение яйцеклетки несколькими сперматозоидами) пол определяется в момент слияния ядер половых клеток (кариогамия). Если с ядром яйцеклетки сливается мужское ядро с Y-хромосомой, разовьётся мужская особь, если с Х-хромосомой - женская. При женской гетерогаметии пол потомства зависит от того, какая из половых хромосом попадает в ядро яйцеклетки во время мейоза. Если в ядре окажется Z-хромосома, разовьётся особь мужского пол., если W-хромосома - женского. Т. о., в данном случае пол зиготы устанавливается до кариогамии. Эпигамное определение пола наблюдается у разнополых видов с фенотипическим определением пола, когда направленность развития в сторону мужского или женского пола обусловливается влиянием внешних условий после оплодотворения.

Зависимость признаков от пола

Зависят от пола признаки, ограниченные и контролируемые им. Ограниченные полом признаки в силу половой дифференциации могут проявиться только у одного из полов (продукция молока или яиц свойственна только женскому полу), хотя полимерные гены этих признаков локализованы в аутосомах обоих полов. Признаки, контролируемые полом, проявляются или у обоих полов (с разной степенью выраженности), или (чаще) только у одного из полов (более мощное развитие рогов у баранов, бороды - у козлов), хотя оба в равной мере содержат в аутосомах гены этих признаков. Несходное их развитие обусловлено значительным различием физиологических процессов в организмах разного пола.

Гены, детерминирующие признаки, сцепленные с полом, локализованы как в парных, так и непарных половых хромосомах и поэтому наследуются иначе, чем признаки, обусловленные парными генами, локализованными в аутосомах обоих полов. Если гены локализованы в непарной Y-хромосоме гетерогаметного самца, то обусловливаемые ими признаки наследуются лишь сыновьями, а при локализации генов в хромосоме гетерогаметной самки - только дочерьми. Наследуемые т. о. признаки называются голандрическими. Этот тип наследования обнаружен у некоторых видов рыб и насекомых. У др. видов животных он с полной достоверностью не доказан. При локализации генов в гомологичных Х- или Z- хромосомах обусловленные ими признаки передаются сцепленно с полом по типу, получившему название наследования крест-накрест, когда рецессивный признак матери проявится у сыновей, а доминантный - у дочерей (Т. X. Морган), что встречается у многих видов животных (например, трёхцветность кошек, полосатость окраски оперения и скорость его роста у кур). Много сцепленных с полом мутаций обнаружено у дрозофилы и тутового шелкопряда.

Сцепленными с П. могут быть и летали - гены, обусловливающие смертельный исход при развитии организма. Если гомогаметный родитель гетерозиготен по летали, локализованной в одной из гомологичных половых хромосом (X или Z), то половина его гетерогаметных потомков погибнет, получив деталь, губительному действию которой в генотипе не будет противопоставлен нормальный аллель. При гетерогаметии женского пола от леталей гибнет половина дочерей, а при гетерогаметии мужского пола - половина сыновей. Иногда мутантные гены в Х- и Z- хромосомах лишь частично снижают жизнеспособность потомства или вызывают различные заболевания, наиболее часто проявляющиеся у гетерогаметного пола. У человека обнаружено свыше 50 сцепленных с полом мутаций, приводящих большей частью к нарушению нормальной жизнедеятельности организма.

Соотношение полов

При фенотипическом определении П. оно зависит от количества развивающихся организмов, которые попадают под влияние внешних факторов, детерминирующих тот или иной пол. При генетическом определении пола соотношение полов у большинства видов, как правило, очень близко к 100♀: 100♂ (100 самок: 100 самцов). Однако и при таком определении пола есть отклонения. Так, у некоторых видов млекопитающих с мужской гетерогаметией статистически достоверно рождается на 1-2% больше потомков мужского пола.

Регуляция пола

Существенный сдвиг соотношения организмов в сторону одного из полов имеет как теоретическое, так и практическое значение, т.к. один из полов обычно более продуктивен. Методы регуляции пола, сведённые к 4 основным направлениям, применяются в зависимости от типа определения пола и биологических и хозяйственных особенностей вида.

Фенотипическое переопределение пола. Если действие генов пола реализуется посредством гормонов, половые признаки изменяются при пересадке половых органов одного пола другому или при введении в организм гормонов противоположного пола, а также некоторых аминокислот. Степень фенотипических изменений пола зависит от особенностей вида и дозы введённого препарата. Однако лишь в редких случаях (у некоторых рыб и земноводных) особи с фенотипически переопределённым пола продуцируют гаметы, противоположные их генотипическому полу. В следующем поколении, если действие гормонов прекращается, снова вступает в силу генетический механизм определения пола.

Управление генетическим механизмом определения пола или искусственное сочетание в яйцеклетке половых хромосом. Направленное изменение соотношения полов достигнуто в экспериментах с тутовым шелкопрядом, у которого пол строго определяется сочетанием половых хромосом (ZW - ♀; ZZ - ♂). Неоплодотворённые яйца после прогрева развиваются партеногенетически за счёт диплоидного ядра, не завершившего редукционного деления. Все клетки партеногенетического эмбриона сохраняют материнскую структуру, в частности и в отношении половых хромосом ZW, и, следовательно, развиваются только в самок (Б. Л. Астауров). Воздействием ионизирующих излучений и прогревом удалось подавить в свежеотложенном осеменённом яйце женское ядро и переключить развитие на мужское начало. Диплоидное ядро мужской зиготы образуется путём слияния двух мужских ядер и поэтому имеет структуру мужского П. ZZ. Из таких зигот развиваются гусеницы всегда мужского пола (X. Хасимото; Б. Л. Астауров). Этими методами впервые у с.-х. вида шелкопряда решена проблема произвольной регуляции пола. У млекопитающих учёные пытаются разделить по морфологическим и физиологическим особенностям Х- и Y-сперматозоиды с целью последующего осеменения одной категорией сперматозоидов. Однако этим способом пока не удалось достоверно сместить соотношение полов.

Раннее распознавание пола используется для сортировки вылупившихся цыплят на петушков и курочек по окраске оперения, сцепленной с полом, а также для «сверхранней» сортировки по полу тутового шелкопряда. Под действием ионизирующего облучения у шелкопряда пересажена аутосома с доминантным геном, обусловливающим тёмную окраску яиц тутового шелкопряда, на половую W- хромосому. Сцепление хромосом стойко передаётся по наследству. Те яйца, в которые попадает W- хромосома с пересаженным доминантным геном, приобретают тёмный цвет и развиваются в самок, в то время как яйца мужского пола, не получив доминантного гена, остаются непигментированными. Фотоэлектрические автоматы с большой скоростью разделяют разноокрашенные яйца по полам. Выведенные таким способом (В. А. Струнников и Л. М. Гуламова) меченые по полу породы шелкопряда находят практическое применение в советском шелководстве. В 60-х гг. 20 в. в опытах английских учёных Р. Эдуардса и

Р. Гарднера зафиксировано рождение потомства только одного пола и у млекопитающих. У кроликов извлекали из тела матери ранних зародышей, цитологическим методом определяли их пол и затем зародышей нежелательного пола выбраковывали, а зародышей нужного пола возвращали в матку. Около 20% возвращенных зародышей прижилось и развивалось в крольчат предсказанного учёными пола.

Изменение соотношения полов может быть почти у всех животных с генетическим определением пола результатом гибели половины зародышей гетерогаметного пола под действием сцепленных с полом деталей. Однако для многих с.-х. животных такой подход к регуляции пола экономически не оправдан. Исключение составляет тутовый шелкопряд. В СССР радиационным методом выведена (В. А. Струнников) генетически особая порода тутового шелкопряда, у которой в обоих Z- хромосомах самцов всегда имеется по одной негомологичной друг другу летали (сбалансированные летали). Если этих самцов скрестить с самками обычных пород, на стадии яйца одна половина самок погибнет от первой, а другая - от второй летали. Из яиц мужского пола вылупляются нормальные гусеницы. Этот способ позволяет в неограниченных количествах получать у тутового шелкопряда только один более продуктивный мужской пол.



Генетика пола

Проблема пола, т.е. вопрос о механизмах, которые определяют развитие мужских и женских особей, остаётся одной из самых актуальных и ещё не решена окончательно.

Пол особи – совокупность генетических, морфологических и физиологических особенностей, обеспечивающих половое размножение организмов.

Хорошо известно, что организмы могут быть обоеполыми (гермафродитами) или раздельнополыми . У обоеполых растений и некоторых гермафродитных животных женские и мужские репродуктивные органы и половые клетки развиваются из генетически одинаковых клеток под влиянием внутренних условий (по отношению к отдельным клеткам их можно рассматривать как внешние). Механизм переключения клеток на развитие в одном случае женских, в другом мужских репродуктивных органов полностью не раскрыт.

Тогда как механизмы определения пола раздельнополых животных и растений изучены достаточно хорошо. Рассмотрим их.

Пол особи раздельнополого организма может определяться генетическими механизмами, либо под влиянием внешних условий среды.

Хромосомные механизмы определения пола

Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки мужского и женского пола. Однако специальные хромосомные механизмы обеспечивают передачу одной половине потомства генов женского пола, а другой - генов мужского пола. И этих механизмов два:

В первом случае активную роль играет наличие или отсутствие одной из половых хромосом;

Во втором, определенный баланс между аутосомами и половыми хромосомами.

А теперь познакомимся с ними поближе. И начнём с общих положений. Что же такое аутосомы и половые хромосомы?

Было выяснено, что у животных особи мужского и женского полов различаются по хромосомным наборам. У самок часто все хромосомы парные, тогда как у самцов две хромосомы гетероморфные, причём одна из них такая же, как и у самки.

Хромосомы, по которым различаются особи мужского и женского полов, получили название половых хромосом . Те из них, которые являются парными у одного из полов, называют Х-хромосомами . Непарная половая хромосома, имеющаяся только у особей одного пола и отсутствующая у другого, была названа Y -хромосомой . Хромосомы, по которым мужской и женский пол не отличаются, называют аутосомами .

Изучение половых хромосом показало, что они отличаются от аутосом не только генетически, но и цитологически. Половые хромосомы богаты гетерохроматином. Их удвоение происходит асинхронно с аутосомами. В мейозе они часто очень сильно спирализованы. А половые хромосомы Х и Y не конъюгируют или конъюгируют лишь частично, что указывает на гомологичность лишь отдельных участков. В отношении морфологии: Y-хромосома часто намного меньше, одно плечо её короче, может быть совсем не выражено.

А теперь рассмотрим сами механизмы.

Очень часто пол определяется по наличию или отсутствию в генотипе гетероморфной хромосомы Y *(или W). При таком типе определения пола Y-хромосома активна и играет важнейшую роль в проявлении признаков пола. В коротком плече Y-хромосомы лежит ген S. Он кодирует белок, который переключает организм с женского пути развития на мужской. Этот белок-регулятор в норме образует комплекс с гормоном тестостероном и тем самым стимулирует функционирование ряда структурных генов, ответственных за развитие мужских вторичных половых признаков. Мутантный ген вырабатывает белок, который не реагирует с тестостероном, а, следовательно, нарушается дифференцировка особи по типу самца.

Поскольку в большинстве случаев именно у самок Х-хромосомы парные, в результате мейоза у них будут образовываться одинаковые яйцеклетки, каждая с одной Х-хромосомой. Пол, производящий одинаковые гаметы в отношении половых хромосом, называют гомогаметным , разные гаметы – гетерогаметным .

Таким образом, у человека гетерогаметен мужской пол. Подобный тип определения пола найден у всех млекопитающих, двукрылых насекомых, некоторых рыб.

Гетерогаметность не всегда присуща именно мужскому полу. Например, у птиц, некоторых рыб и бабочек гетерогаметным является женский пол, а гомогаметным – мужской. В данном случае парные половые хромосомы принято обозначать буквой Z, гетерохромосому – W. Яйцеклетки у них двух типов – с Z- и W-хромосомами, а сперматозоиды несут только Z-хромосому.

Это у большинства организмов.

Но К.Бриджес в 1921 г. показал, что у некоторых организмов, в частности дрозофил, пол определяется соотношением (балансом) числа половых хромосом и аутосом. Теория К. Бриджеса получила название балансовой теории определения пола.

Например, если мухи имеют генотип 2A:2Х (гаплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Если это соотношение в зиготе равно 0,5 (1Х:2А), то развивается самец. При промежуточном соотношении (2Х:3А=0,67 - наблюдаются триплоидные организмы, несущие три набора хромосом, вместо двух) развиваются интерсексы – мухи, имеющие промежуточный фенотип – нечто среднее между самцами и самками. При соотношении 3Х:2А=1,5 получаются сверхсамки; Бриджес получил также мух с генотипом ЗA:X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы. Сверхсамки и сверхсамцы рано погибают. По предположению Бриджеса, Y-хромосома у дрозофил фактически не играет роли в определении пола (сейчас выяснено, что в Y-хромосоме мух есть ген, определяющий фертильность самцов).

Таким образом, фактически было показано, что развитие пола у дрозофил зависит от того, в каком соотношении вырабатываются белки, кодируемые аутосомами и Х-хромосомами. На аутосомах и Х-хромосоме найдены гены, кодирующие эти белки-определители пола.

Таким образом, хромосомный механизм определения пола подразделяется на два основных типа (характерно и для растений, и для животных):

1. Активную роль в определении пола играет Y-хромосома;

2. Пол определяется балансом аутосом и Х-хромосом, при этом Y-хромосома практически инертна.

У части животных (пчёл, муравьёв, ос) существует особый тип определения пола, названный гапло-диплоидным . У этих насекомых нет половых хромосом. Самки развиваются из оплодотворённых яиц и диплоидны, а самцы – из неоплодотворённых яиц и гаплоидны. При сперматогенезе число хромосом не редуцируется

Роль условий среды в определении пола

Следует специально рассмотреть вопрос о роли условий среды в определении пола. У большинства известных раздельнополых организмов условия среды не контролируют пол особи. Пол определяется только генетическим механизмом.

У немногочисленных животных внешняя среда определяет пол особи. В редких случаях у раздельнополых видов потенциально бисексуальные зиготы развиваются в самок или самцов под влиянием внешних условий. Например, у морского кольчатого червя бонеллия личинка, поселяясь на хоботке самки, развивается в самца, а на дне моря - в самку. У растения Arisaema japonica из крупных клубней, богатых питательными веществами, развиваются растения с женским цветками, а из мелких клубней - с мужскими. Определение пола под влиянием внешних условий называется фенотипическим, или модификационным. Например, у яйцекладущих на пол будущего потомства существенное влияние оказывает температура окружающей среды. При 300С развиваются самки, при 320С – самцы и самки, при 330С – самцы.

Эволюционно этот способ, вероятно, самый примитивный у раздельнополых животных и самый древний.

Подводя итоги, можно сказать, что на всех уровнях организации живой природы организмы являются генетически бисексуальными, т.е. имеют две возможности развития, и определение пола – результат баланса генов, механизм поддержания которого может быть разным. Наиболее распространена саморегулирующаяся система половых хромосом.

Наследование признаков, сцепленных с полом

В Y- и Х-хромосомах есть гомологичные и негомологичные участки.

По сути в гомологичных участках находятся аллельные гены. Наследование этих генов лишь немногим отличается от наследования аутосомных генов.

И есть негомологичные участки. Гены, расположенные в этих участках, имеют свои особенности наследования.

Если гены локализованы в непарной Y-хромосоме гетерогаметного самца, то обусловливаемые ими признаки наследуются лишь сыновьями, а при локализации генов в W-хромосоме гетерогаметной самки - только дочерьми. Наследуемые таким образом признаки называются голандрическими . Этот тип наследования обнаружен у некоторых видов рыб и насекомых.

Есть гены, которые не имеют гомологов в Y-хромосоме. Они имеют свои особенности наследования. У мушки дрозофилы ген, определяющий красную или белую окраску глаз, локализован в Х-хромосоме. Доминантная аллель определяет красную окраску, рецессивная белую. Если проводить реципрокные скрещивания, то можно получить различные результаты:

а) скрещивали самку с красными глазами и самца с белыми – первое поколение единообразно, при скрещивании особей первого поколения между собой наблюдали расщепление во втором поколении 3:1, самки красноглазые, самцы белоглазые и красноглазые;

б) скрещивали белоглазую самку с красноглазым самцом – в первом поколении наблюдали расщепление 1:1, при этом белоглазыми оказывались только самцы, а все самки красноглазыми, т.е. дочери наследовали признак отца, а сыновья матери.

Такой тип передачи признаков получил название крест-накрест или крисс-кросс .

Во втором поколении от скрещивания особей первого получали расщепление 1:1 по признаку, причём как среди самок, так и среди самцов. Запишите номера вопросов и дайте ответ... 24. Важнейшие термины и понятия: «Генетика пола» Дайте определение терминам или раскройте...

  • Генетика . Конспект лекций

    Конспект >> Биология

    ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ Лекция 8-9 Генетика пола и наследование признаков, сцепленных с полом . Сцепление генов и кроссинговер... лекции: ознакомить учащихся с генетикой пола и наследованием признаков, сцепленных с полом , изучить сцепление генов и...

  • Генетика пола. Наследование, сцепленное с полом.

    Цель: сформировать у учащихся представление о генетике пола, наследовании признаков, сцепленных с полом.

    Задачи:

    1. Образовательные: сформировать понятия: аутосомы, гетерохромосомы, гомогаметный, гетерогаметный пол, сформировать представление о детерминации развития пола, признаках, сцепленных с полом, признаках наследуемых через Y-хромосому и Х-хромосому; познакомить учащихся с особенностями наследования половых хромосом, некоторыми патологическими состояниями человека, наследуемыми сцепленно с полом.

    2. Развивающие: продолжить формирование умений и навыков решения генетических задач на сцепленное наследование генов, на наследование, сцепленное с полом, развивать мыслительные операции.

    3. Воспитательные: формировать сознательное отношение к своему здоровью и здоровью потомков.

    Оборудование: компьютер, мультимедиапроектор, экран (интерактивная доска), презентация в Power Point.

    Тип урока: урок изучения новой темы.

    Генетика пола

    Генетика объяснила сущность удивительной и важной проблемы: равное распределение женских и мужских особей в поколениях животных и людей

    · Для какого способа размножения характерно образование гамет? Половое

    · Какой набор хромосом они имеют? n

    · Как называется оплодотворенная яйцеклетка, и какой набор хромосом она имеет? Зигота, 2n

    Для начала вспомним, что представляет собой хромосомный набор клеток человека.

    В кариотипе человека состоит из скольких хромосом? из 46 хромосом

    44 одинаковы у всех особей, независимо от пола (эти хромосомы называют аутосомами), а одной парой хромосом, называемых половыми, женщины отличаются от мужчин. Это общебиологическая закономерность для всех живых организмов, размножающихся половым путем.

    Аутосомы – парные хромосомы, одинаковые и для мужских и женских организмов.

    Половые хромосомы – хромосомы, набор которых отличает мужские и женские особи у животных и растений с хромосомным определением пола.

    Диплоидная клетка организма человека: 46 хромосом =23 пары гомологичных хромосом, из которых 22 пары - аутосомы + 1 пара половые хромосомы:

    · Как обозначаются половые хромосомы? у мужчины - ХY; у женщины - ХХ.

    Пол можно рассматривать как один из признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный.

    Пол будущего потомка определяется сочетанием половых хромосом. Пол, имеющий одинаковые половые хромосомы, называют гомогаметным , так как он дает один тип гамет, а имеющий разные-гетерогаметным , так как он образует два типа гамет. У человека, млекопитающих, мухи дрозофилы гомогаметный пол женский, а гетерогаметный - мужской. Гетерогаметный женский у птиц, рептилий

    · У мужского пола в процессе гаметогенеза формируется 2 типа гамет в равной пропорции, так как мужской пол - гетерогаметный: Х-сперматозоиды и Y-сперматозоиды.

    · Поскольку у женского пола половые хромосомы одинаковы, так как женский пол - гомогаметный, то каждая яйцеклетка несет Х-хромосому.

    Теоретически соотношение полов должно быть 1:1. Эта статистическая закономерность, обеспечиваемая условием равновероятной встречи гамет. Статистически так и получается.

    · Как думаете, какой гомогаметный или гетерогаметный пол будет определять пол?

    Пол будущего организма всегда определяет гетерогаметный пол (т.е. мужской), именно потому, что гаметы с Х- и Y- хромосомой образуются у мужского пола в равных количествах.

    X- и Y-хромосомы отличаются по строению: Y-хромосома состоит как бы из двух участков - одного гомологичного Х-хромосоме, а другого негомологичного. А так же по набору генов, которые в них находятся.

    Хромосомный механизм определения пола

    ПОЛ

    Protenor

    2. ХУ – тип Lygaeus

    нехромосомным Bonellia ).

    Хромосомный механизм определения пола

    ПОЛ – это совокупность признаков и свойств организма, обеспечивающих его участие в воспроизводстве потомства и передача наследственной информации за счет образования гамет.

    Самец и самка имеют закономерное различие, касающееся одной пары хромосом. Они называются ГЕТЕРОХРОМОСОМАМИ (половыми хромосомами). Остальные пары – АУТОСОМАМИ.

    Пол, имеющий одинаковые половые хромосомы (ХХ) и образующий один тип гамет называется ГОМОГАМЕТНЫМ. Пол с разными половыми хромосомами, образующий два типа гамет, называется ГЕТЕРОГАМЕТНЫМ. Гетерогаметный пол бывает двух типов:

    1. ХО (нет У хромосомы) – тип Protenor

    2. ХУ – типLygaeus

    Гетерогаметным может быть женский (птицы, пресмыкающиеся, бабочки) и мужской пол.

    СИНГАМНОЕ определение пола происходит в момент слияния гамет в процессе оплодотворения, характерно для организмов с гетерогаметным мужским полом (человек, животные, большинство растений).

    Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку:

    ПРОГАМНОЕ определение пола происходит в процессе созревания яйцеклеток при овогенезе, характерно для организмов с гетерогаметным женским полом (птицы, пресмыкающиеся, бабочки). Пол будущего потомка зависит от типа яйцеклетки: если яйцеклетка содержит Х-хромосому, то из нее после оплодотворения развивается самец, если яйцеклетка содержит У-хромосому, то из нее после оплодотворения развивается самка.

    ЭПИГАМНОЕ определение пола является нехромосомным и происходит после оплодотворения в процессе индивидуального развития организма под влиянием условий внешней среды, характерно для организмов, у которых отсутствуют половые хромосомы и гены, отвечающие за половые признаки, распределены по всему генотипу (некоторые животные, морской червьBonellia ).

    ЦИТОГЕНЕТИЧЕСКИЙ МЕТОД определения пола заключается в исследовании наличия полового хроматина (тельца Барра) в неделящихся соматических клетках слизистой оболочки щеки (буккальный соскоб) или на мазках крови в ядрах нейтрофиллоцитов ("барабанные палочки"). Он присутствует только у женщин (в норме).

    Наследование, сцеплеНноЕ с полом

    Признаки, определяемые генами, находящимися в половых хромосомах, называются ПРИЗНАКАМИ, СЦЕПЛЕННЫМИ С ПОЛОМ . Это явление было открыто Морганом у дрозофилы.

    У человека с У-хромосомой связано несколько аномалий, которые передаются только по мужской линии: рыбья кожа (ихтиоз), синдактилия (перепончатые пальцы), гипертрихоз (оволоснение ушной раковины). В Х-хромосоме локализуются гены, обуславливающие развитие около 200 признаков.

    ДОМИНАНТНЫЕ: гипофосфатемический рахит (аномалия костей, не лечащаяся витамином "D"), гипоплазия эмали (потемнение эмали зубов).

    РЕЦЕССИВНЫЕ: дальтонизм, гемофилия, подагра, дистрофия Дюшена, отсутствие потовых желез и др.

    Признаки, сцепленные с Х-хромосомой по рецессиву, передаются от матерей к сыновьям, а от отцов к дочерям. Такой тип передачи получил название крест-накрест иликрисс-кросс .

    Признаки, сцепленные с У-хромосомой, передаются от отца к сыну и проявляются у самцов. Такой тип передачи называется ГОЛАНДРИЧЕСКОЕ НАСЛЕДОВАНИЕ .

    Хромосомное определение пола

    Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, - аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, - половые хромосомы. У человека «женскими» половыми хромосомами являются две Х-хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х-хромосом. Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека - Х-хромосома и Y-хромосома. При образовании гамет половина сперматозоидов получает Х-хромосому, другая половина - Y-хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол - гетерогаметный. Если образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому - мужской.

    У животных можно выделить следующие четыре типа хромосомного определения пола .

    1. Женский пол - гомогаметен (ХХ), мужской - гетерогаметен (ХY) (млекопитающие, в частности, человек, дрозофила).

    Генетическая схема хромосомного определения пола у человека:

    Р ♀46, XX × ♂46, XY
    Типы гамет 23, X 23, X 23, Y
    F 46, XX женские особи, 50% 46, XY мужские особи, 50%

    Генетическая схема хромосомного определения пола у дрозофилы:

    Р ♀8, XX × ♂8, XY
    Типы гамет 4, X 4, X 4, Y
    F 8, XX женские особи, 50% 8, XY мужские особи, 50%

    2. Женский пол - гомогаметен (ХХ), мужской - гетерогаметен (Х0) (прямокрылые).

    Генетическая схема хромосомного определения пола у пустынной саранчи:

    Р ♀24, XX × ♂23, X0
    Типы гамет 12, X 12, X 11, 0
    F 24, XX женские особи, 50% 23, X0 мужские особи, 50%

    3. Женский пол - гетерогаметен (ХY), мужской - гомогаметен (ХХ) (птицы, пресмыкающиеся).

    Генетическая схема хромосомного определения пола у голубя:

    Р ♀80, XY × ♂80, XX
    Типы гамет 40, X 40, Y 40, X
    F 80, XY женские особи, 50% 80, XX мужские особи, 50%

    Яндекс.ДиректВсе объявления

    Срочное решение задач (школа,ВУЗ) Нам -задача, Вам-решение. Просто оставьте свой заказ! vuz‑help.ru Фильмы онлайн бесплатно Смотрите на Zoomby! Каждый день фильмы у нас смотрят более 400 000 человек! zoomby.ru Брендовая Обувь в 3 раза дешевле! Ликвидация модной обуви! Sale! Бесплатная доставка РФ! Примерка до оплаты! Адрес и телефон lamoda.ru Решение задач онлайн – бесплатно! ЛовиОтвет – умный калькулятор. Отображение этапов решения.Скачай бесплатно! loviotvet.ru

    4. Женский пол - гетерогаметен (Х0), мужской - гомогаметен (ХХ) (некоторые виды насекомых).

    Генетическая схема хромосомного определения пола у моли:

    Р ♀61, X0 × ♂62, XX
    Типы гамет 31, X 30, Y 31, X
    F 61, X0 женские особи, 50% 62, XX мужские особи, 50%

    Механизм определения пола у человека это:

    Механизм определения пола у человека

    Механизм определения пола у человека

    Определение пола у человека происходит по XY-механизму (см. также Определение пола). При этом гетерогаметным полом является мужской, гомогаметным - женский. Определение пола делится на три этапа: хромосомный, гонадный и фенотипический.

    Два основных правила определения пола у млекопитающих.

    Классическими эмбриогенетическими исследованиями установлены два правила определения пола у млекопитающих. Первое из них сформулировано в 60-х годах Альфредом Жостом на основе экспериментов по удалению зачатка будущих гонад (гонадный валик) у ранних эмбрионов кроликов: удаление валиков до формирования гонады приводило к развитию всех эмбрионов как самок . Было высказано предположение о секретировании гонадами самцов (тестисами) эффектора (Тестостерон), ответственного за маскулинизацию плодов, и предсказано наличие второго эффектора антимюллеровского гормона (MIS), непосредственно контролирующего такие анатомические преобразования. Результаты наблюдений были сформулированы в виде правила: специализация развивающихся гонад в тестис или яичник определяет последующую половую дифференциацию эмбриона. Примерно до 1959 года предполагалось, что число Х-хромосом, которое, как известно, равно двум у самок и одному у самцов, является важнейшим фактором контроля пола у млекопитающих. Однако обнаружение индивидуумов с единственной X-хромосомой, развивающихся как самки, а особей с одной Y-хромосомой и множественными X-хромосомами как самцы заставило отказаться от таких представлений. Сформулировано второе правило определения пола у млекопитающих: Y-хромосома несет генетическую информацию, требуемую для детерминации пола у самцов . Комбинация приведенных выше двух правил иногда называется принципом роста: Хромосомный пол, связанный с присутствием или отсутствием Y-хромосомы, определяет дифференциацию эмбриональной гонады, которая, в свою очередь, контролирует фенотипический пол организма. Подобный механизм определения пола называют генетическим (GSD) и противопоставляют таковому, основанному на контролирующей роли факторов внешней среды (ESD) или соотношению половых хромосом и аутосом (CSD).

    Физиологическая основа гонадного уровня детерминации пола.

    Физиологической основой механизма определения пола является бисексуальность эмбриональных гонад млекопитающих. В таких прогонадах одновременно присутствуют Мюллеров проток и Вольфов канал- зачатки половых путей соответственно самок и самцов. Первичная детерминация пола начинается с появления в прогонадах специализированных клеточных линий - Клетка Сертоли. В последних синтезируется предсказанный Жостом MIS, ответственный за прямое или опосредованное ингибирование развития Мюллерова протока - зачатка будущих фаллопиевых труб и матки.

    Генетический механизм определения пола.

    Y-хромосома человека с указанием локализации SRY-гена

    В 1987 году Дэвид Пэйдж и его коллеги, исследуя мужчину XX, унаследовавшего 280 т.п.н. фрагмент Y-хромосомспецифической ДНК, и женщину XY с делецией (нехваткой), захватывающей эту область в результате обмена участками между хромосомами, казалось, обнаружили ускользающий TDF. Им оказался присутствующий в Y-хромосоме всех настоящих зверей Eutheria и расположенный в области размером 140 т.п.н. в 100 т.п.н. от границы псевдоаутосомальной области ген ZFY. Гомолог ZFY – ZFX обнаружен в X-хромосоме, причем он избегает характерной для генов, в ней локализованных, инактивации. Оба эти фактора кодируют белок, образующий структуру так называемых цинковых пальцев, обладающий ДНК-связывающей активностью, который можно рассматривать как фактор транскрипции. Дальнейший детальный анализ Y-хромосом специфических последовательностей у особей с инверсией пола ограничил поиск районом размером 35 т.п.н. и привел к обнаружению гена, рассматриваемого как истинный эквивалент классического TDF. Такой ген получил название SRY (Sex determining Region Y gene ). Приведем некоторые его характеристики, заставляющие считаться с этим предположением. SRY расположен в полопределяющей области и содержит консервативный домен (HMG-бокс), кодирующий белок размером 80 аминокислотных остатков. Его активность отмечена накануне периода дифференциации прогонады в тестис - 10-12-й день эмбрионального развития у мыши и по крайней мере на этой стадии не зависит от присутствия половых клеток. Специфические точковые мутации или делеции в HMG-боксе этого гена у женщин XY приводят к инверсии пола. Перенос 14 т.п.н. фрагмента ДНК, содержащего этот ген с фланкирующими участками, в оплодотворенную яйцеклетку гомогаметной особи с помощью микроинъекции (процедура трансгенеза - переноса генов) привел к появлению самца с XX-кариотипом. Правда, у этого животного отмечен дефектный сперматогенез.

    Функции гена SRY.

    Домен, кодируемый HMG-боксом SRY-гена, специфически связывается с ДНК, приводя к изгибанию ее молекулы. Такая деформация структуры ДНК, индуцируемая SRY-белком или родственными ему молекулами (известно более 100 белков с HMG-доменом), может механически передаваться на расстояние и играть важную роль в регуляции транскрипции, репликации и рекомбинации. Область ДНК, в которой локализуется SRY, ответственна за кодирование двух ключевых ферментов, участвующих в дифференцировке первичной гонады по мужскому типу: ароматазы Р450, контролирующей конверсию тестостерона в эстрадиол и фактора или гормона, ингибирующего развитие протоков Миллера, который вызывает обратное их развитие и способствует дифференцировке тестикул. Также SRY участвует в процессах половой дифференцировки в тесном взаимодействии с еще одним геном, названным K.McElreavey и соавт. (1993) геном Z, функция которого в норме заключается в угнетении специфических мужских генов. В случае нормального мужского генотипа 46XY ген SRY продуцирует белок, угнетающий ген Z, и специфические мужские гены активируются. В случае нормального женского генотипа 46ХХ, при котором отсутствует SRY, ген Z активируется и угнетает специфический мужской ген, что создает условия для развития по женскому типу.

    См. также

    • Половые хромосомы
    • Соотношение полов
    • Определение пола

    Wikimedia Foundation. 2010.

    Вопрос 1. Какие хромосомы называют половыми?
    Половые хромосомы - это пара хромосом, которые различаются у мужских и женских особей одного биологического вида. У оного из полов это, как правило, две одинаковые крупные хромосомы (Х-хромосомы, генотип XX); у другого - одна Х-хромосома и одна меньшая по размеру У-хромосома (генотип ХУ). У некоторых видов мужской пол формируется при отсутствии одной половой хромосомы (генотип XO).

    Вопрос 2. Что такое аутосомы?
    Аутосомы - это пары хромосом, которые идентичны у особей одного биологического вида, относящихся к разным полам. Число пар аутосом равно числу пар хромосом в генотипе минус единица (одна пара половых хромосом). Так, у человека 22 пары аутосом, у дрозофилы - 3 пары. Всем аутосомам каждого биологического вида даны порядковые номера в соответствии с их размером (первая - самая большая; последняя - самая короткая и, следовательно, несущая меньше всего генов).

    Вопрос 3. Что такое гомогаметный и гетерогаметный пол?
    Пол, имеющий две одинаковые половые хромосомы (XX), называется гомогаметным, так как он образует только один тип гамет, содержащих Х-хромосому. Пол, определяемый различными половыми хромосомами (ХY), называется гетерогаметным, так как образует два типа гамет: содержащих X- и Y-хромосомы соответственно.
    У человека гомогаметен женский пол (генотип ХX), гетерогаметен мужской (генотип ХУ).

    Вопрос 4. Когда происходит генетическое определение пола у человека и чем это обусловлено?
    Пол будущего организма у человека определяется в момент оплодотворения и зависит от того, какой из сперматозоидов оплодотворит яйцеклетку. При оплодотворении яйцеклетки сперматозоидом, содержащим Х-хромосому, в зиготе будут две Х-хромосомы и из нее разовьется женский организм. При оплодотворении яйцеклетки сперматозоидом с Y-хромосомой в зиготе будут содержаться Х- и Y-хромосомы и она даст начало мужскому организму. Нетрудно заметить, что образование сперматозоидов с X и Y-хромосомами равновероятно и, следовательно, механизм гаметогенеза определяет не только пол, но и примерное численное равенство полов в каждом поколении.

    Рис. 1. Схема скрещивания организмов.

    У всех млекопитающих, человека и мухи дрозофилы гомогаметным является женский пол, а гетерогаметным – мужской.

    Вопрос 5. Какие вам известны механизмы определения пола? Приведите примеры.
    Пол - это совокупность морфологических, физиологических, биохимических и других признаков организма, обусловливающих воспроизведение себе подобного. При изучении наборов хромосом мужских и женских особей обратили внимание на тот факт, что у женских организмов все хромосомы образуют пары, а у мужских, помимо парных (гомологичных) хромосом, имеются две непарные. В дальнейшем было установлено, что эти непарные хромосомы как раз и определяют пол организма. Большая из непарных хромосом, которая содержится в женском кариотипе в двойном наборе, а в мужском - в одиночном, названа Х-хромосомой. Меньшая из непарных хромосом, которая содержится только у особей мужского пола, названа Y-хромосомой. Парные хромосомы, одинаковые у мужского и женского организма, называются аутосомами (А), а Х- и Y-хромосомы - половыми. В диплоидном наборе у человека содержится 23 пары или 46 хромосом: 22 пары аутосом и одна пара половых хромосом. У женского организма это две Х-хромосомы, а у мужского - Х и У- хромосомы. Набор хромосом женщины может быть представлен записью: 44A + 2Х, а мужчины - 44А+ХY.
    Пол, имеющий две одинаковые половые хромосомы (XX), называется гомогаметным, так как он образует только один тип гамет, содержащих Х-хромосому. Пол, определяемый различными половыми хромосомами (ХY), называется гетерогаметным, так как образует два типа гамет: содержащих X- и Y-хромосомы соответственно. Пол будущего организма у человека определяется в момент оплодотворения и зависит от того, какой из сперматозоидов оплодотворит яйцеклетку. При оплодотворении яйцеклетки сперматозоидом, содержащим Х-хромосому, в зиготе будут две Х-хромосомы и из нее разовьется женский организм. При оплодотворении яйцеклетки сперматозоидом с Y-хромосомой в зиготе будут содержаться Х- и Y-хромосомы и она даст начало мужскому организму. Нетрудно заметить, что образование сперматозоидов с X и Y-хромосомами равновероятно и, следовательно, механизм гаметогенеза определяет не только пол, но и примерное численное равенство полов в каждом поколении (см. рис. 1.). У всех млекопитающих, человека и мухи дрозофилы гомогаметным является женский пол, а гетерогаметным – мужской.
    Гомогаметный пол дает один тип гамет, а гетерогаметный (гемизиготный) – два типа гамет.
    У птиц и некоторых насекомых, например, у бабочек, гомогаметным является мужской пол (ZZ), а женские особи - гетерогаметны (ZW).
    У части животных (пчёл, муравьёв и ос) существует особый тип определение пола, названный гаплодиплоидным. У этих особей нет половых хромосом. Самки и рабочие пчелы развиваются из оплодотворённых яиц и диплоидны, а самцы из неоплодотворённых яиц и гаплоидны. При сперматогенезе число хромосом не редуцируется. Если диплоидную личинку кормят пчелиным молочком, то из нее образуется самка. При кормлении диплоидной личинки медом – рабочая пчела.
    У человека и у описанных выше животных пол наследуется в момент слияния гамет (это сингамное или хромосомное определение пола).
    Однако у некоторых многоклеточных животных определение пола происходит до начала дробления, вне связи с оплодотворением (такое определение пола называется прогамном). У отдельных круглых червей из крупной яйцеклетки развиваются самки, из мелкой – самцы. Примером такого определения пола могут служить многие круглые черви.
    Эпигамный вариант определения пола происходит на личиночной стадии и зависит от действия окружающей среды. Например, от степени прогревания яиц в кладке черепахи образуются самки или самцы. У червя Боннели самка может размножаться партеногенезом. Если личинка оседает на хоботок самки, то из нее образуется самец (под действием гормонов самки), а если она не встречает самку, то личинка становится самкой.
    У некоторых животных пол может меняться в течение жизни несколько раз в зависимости от условий окружающей среды. Например, если у гаремных рыбок кардиналов (в природе) погибает самец, то наиболее активная самка начинает функционировать как самец. Тоже самое наблюдается у некоторых земноводных и двустворчатых моллюсков. То есть, если год предполагается удачным для развития молоди, то некоторые самцы в популяции этих животных превращаются в самок. Таким образом, появившаяся молодь имеет больший шанс выжить, а границы популяции расширяются. Во время неурожайного года некоторые самки в популяции превращаются в самцов; молоди в популяции будет меньше, но и внутривидовая борьба на уровне молоди (самая жестокая борьба) сгладится.
    Не все животные на протяжении жизни могут менять пол. Смена пола возможна лишь у тех животных, которые имеют наружное оплодотворение и схожее строение гонад (половых желез) у женских и мужских особей.
    Кроме того, принадлежность особей к тому или иному полу может определяться под влиянием внешней среды (химических веществ, температуры) уже после оплодотворения, как, например, у морского червя боннелии.

    Вопрос 6. Объясните, что такое наследование, сцепленное с полом.
    В половых хромосомах могут находиться гены, не имеющие отношение к развитию половых признаков. Так, в Х-хромосоме дрозофилы находится ген, определяющий окраску глаз. Х-хромосома человека содержит ген, обусловливающий свертываемость крови (Н). Его рецессивная аллель (h) вызывает тяжелое заболевание, характеризующееся пониженной свертываемостью крови, - гемофилию. В этой же хромосоме есть гены, определяющие нечувствительность к красному и зеленому цвету (дальтонизм), форму и объем зубов, синтез ряда ферментов и т. д.
    В отличие от генов, локализованных в аутосомах, мри сцеплении с полом может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит в тех случаях, когда рецессивный ген, сцепленный с Х-хромосомой, попадает в гетерогаметный организм. При кариотипе XУ рецессивный ген в Х-хромосоме проявляется фенотипически, поскольку У-хромосома негомологична Х-хромосоме и не содержит доминантной аллели.
    Рассмотрим законы наследования признаков, сцепленных с полом, установленные Морганом, на следующем примере. В брак вступают женщина-дальтоник (рецессивный признак) и мужчина с нормальным цветовосприятием (рис. 2.). Рассматривая цитологическое обоснование наследования этого признака в данном браке, видим, что сыновья свою единственную Х-хромосому получают от матери, следовательно, будут иметь подобный ей фенотип по данному признаку (дальтонизм). Дочери получают одну Х-хромосому от матери (с рецессивным геном дальтонизма), а другую Х-хромосому от отца (с доминантным геном нормы по дальтонизму), поэтому они будут иметь нормальное зрение. Видим, что фенотипический признак отца перешел к дочерям, а от матери – сыновьям (крисс-кросс наследование).


    Рис. 2. Наследование признаков сцепленных с полом (при рецессивности гомогаметного пола).

    В случае если мать имеет нормальное зрение и гомозиготная, а отец дальтоник, то все дети будут иметь нормальное цветовосприятие (рис. 3.).


    Рис. 3. Наследование цветовой слепоты (женщина – доминантна и гомозиготная, а супруг – дальтоник).

    Если их дочь выйдет замуж за здорового мужчину, то возможное соотношение фенотипов у их детей будет (рис. 4).


    Рис. 4. Наследование цветовой слепоты (женщина – гетерозиготная, а супруг здоров).

    Вопрос 7. Как наследуется дальтонизм? Какое цветоощущение будет у детей, мать которых - дальтоник, а отец имеет нормальное зрение?
    Дальтонизм вызывается рецессивным аллелем гена, расположенного в Х-хромосоме (Хd); нормальное цветоощущение обеспечивает доминантный аллель (ХD). Женщины, гетерозиготные по данному гену, не болеют дальтонизмом. Однако они являются носительницами рецессивного аллеля, и их сыновья с вероятностью 50% могут родиться дальтониками.
    Если мать детей - дальтоник, то она гомозиготна по рецессивному аллелю (ХdХd) и все ее яйцеклетки содержат Хd-хромосому. Отец, обладающий нормальным зрением, имеет генотип ХDУ. Их дети могут иметь следующие генотипы: ХDХd и ХdУ, т.е. все мальчики будут дальтониками, а все девочки будут носительницами.



    ← Вернуться

    ×
    Вступай в сообщество «shango.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «shango.ru»