Курс «ГИС в экологии. Инструменты ArcGIS

Подписаться
Вступай в сообщество «shango.ru»!
ВКонтакте:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    История создания географических информационных систем, их классификация и функции. Сущность геохимической оценки техногенных аномалий. Применение геоинформационной системы ArcView 9 для оценки загрязнения тяжелыми металлами атмосферного воздуха г. Ялты.

    дипломная работа , добавлен 19.12.2012

    Информационное обеспечение экологических исследований. Структура и особенности экспертной системы. Преимущества геоинформационных систем. Модели в "математической экологии". Системы получения данных. Объединение различных информационных технологий.

    реферат , добавлен 11.12.2014

    Особенности экологии района: основные проблемы Челябинской области в сфере экологии, влияние промышленных предприятий на экологию, пути и методы решения экологических проблем. Усовершенствование технологий по очистке природной среды от отходов.

    доклад , добавлен 15.07.2008

    Основные виды хроматографии. Применение хроматографических методов в экологическом мониторинге. Применение хроматографии в анализе объектов окружающей среды. Современное аппаратурное оформление. Методы проявления хроматограмм и работа хроматографа.

    курсовая работа , добавлен 08.01.2010

    Использование геоинформационных систем для создания карт основных параметров окружающей среды в нефтегазовой отрасли с целью выявления масштабов и темпов деградации флоры и фауны. Базовые основы системы мониторинга и комплексной оценки природной среды.

    курсовая работа , добавлен 27.02.2011

    Понятие мониторинга загрязнения вредными веществами, его цели и задачи, классификация. Институты регионального мониторинга состояния экологии. Построение системы регионального наблюдения в Республике Беларусь. Некоторые результаты стационарных наблюдений.

    реферат , добавлен 30.05.2015

    презентация , добавлен 27.11.2015

    Общая характеристика загрязнений естественного и антропогенного происхождения, физические, химические и биологические загрязнения природной среды. Последствия загрязнения и неблагоприятное изменение нашего окружения, контроль и ликвидация отходов.

    2.1.Общая методика проведения экологических

    2.2.Особенности компонентного состава

    Глава 3. Использование ГИС для ведения локальных экологических исследований (наполнение блока «экология»

    3.1.Создание слоя квартальной застройки базовой картографической основы города Калуги как необходимое условие для проведения дальнейших

    3.2.Картографическая оценка качества окружающей среды на территории города Калуги по стабильности

    3.3.Локальная оценка качества вод малых рек окрестностей города Калуги с использованием ГИС (Ячейка. Терепец. Киёвка, Калужка).

    3.4. Картографическая оценка качества окружающей среды на территории Калужского городского бора.

    3.5.Создание кадастра древесных и кустарниковых растений произрастающих на улицах города Калуги с использованием ГИС.

    Глава 4. Использование ГИС для ведения региональных экологических исследований (наполнение блока «экология» ГИС Калужской области).

    4.1 .Картографическая оценка качества окружающей среды на территории Калужской области по стабильности развития берёзы повислой.

    4.2.Региональная оценка качества вод с использованием ГИС в некоторых реках Калужской

    4.3.Создание карт оценки качества окружающей среды по результатам биоиндикационных исследований на территории ООПТ (национальный парк «Угра» и заповедник «Калужские засеки»).

    4.4.Картографическая оценка качества окружающей среды на территории Калужской области по заболеваемости экопатологиями детей до

    4.5. Создание кадастра редких и исчезающих видов грибов, растений и животных на территории Калужской области как блока ГИС «Красная книга

    Глава 5. Сравнительный анализ данных экологических исследований в среде ГИС.

    5.1 .Сравнительный анализ качества окружающей среды по состоянию древесных и кустарниковых растений и по показателю стабильности развития древесных растений на территории Ленинского округа города Калуга за 2004 год.

    5.2.Сравнительный анализ качества водной среды по результатам гидробиологических и химических исследований в малых реках окрестностей города

    5.3.Сравнительный анализ карт распространения редких и исчезающих видов грибов, растений и животных и суммарной изученности территории

    5.4.Сравнительный анализ карт распространения редких и исчезающих видов грибов, растений и животных и суммарной биоиндикацонной карты на территории Калужской области в период с 1997 по

    5.5.Сравнение суммарных биоиндикационных

    Введение Диссертация по наукам о земле, на тему "Использование ГИС-технологий в региональных и локальных экологических исследованиях (на примере Калужской обл.)"

    Актуальность темы. Рост численности населения и развитие техносферы существенно расширили область взаимодействия человека и природы. Действуя, не считаясь с законами живой природы и нарушая экологическое равновесие для удовлетворения своих потребностей, человечество, в конечном итоге, поставило себя в еще большую зависимость от состояния окружающей среды. Для выживания и дальнейшего развития человечества необходимы изучение Земли как целостной системы и формирование банка данных и знаний о процессах и элементах природной среды и общества в широком спектре их взаимодействия, анализ, оценка и прогнозирование динамики явлений и процессов, происходящих в окружающем мире с целью принятия экологически грамотных решений в сфере взаимодействия природы и общества (Экоинформатика. 1992). Для реализации рационального управления окружающей средой с учётом научно - обоснованных решений необходимо создание экологических информационных систем. Программа ООН по окружающей среде (ЮНЕП), созданная в 1972 году предусматривает создание глобальной системы наблюдения за окружающей средой. Данные для этой системы поставляют глобальная система наблюдения за окружающей средой (ГСМОС), информационно-справочная система ИНФОТЕРРА и другие крупные межнациональные проекты (Risser, 1988. Гершензон. 2003). С 1980 года развивается глобальная база данных о природных ресурсах (ГРИД). Работу с огромными массивами данных, информации и знаний, которые накопило и продолжает постоянно получать человечество, должны облегчить использование новых информационных технологий, в частности использование географических информационных систем (ГИС). ГИС - это компьютерные системы сбора, хранения, обработки и отображения пространственно-координированных данных, которые интегрируют разнородную информацию, поступающую из различных источников на основе пространственного положения, в результате чего появляется возможность сопоставлять разнообразные факторы среды и проводить комплексную геоэкологическую оценку территории (Сербенюк, 1990; Берлянт, 1996; Жуков, Лазарев, Новаковский, 1995).

    По материалам ГИС-Ассоциации в России экологические ГИС региональных и локальных уровней обычно применяют для решения какой-либо одной узкой задачи (отображение деградации флоры или фауны, моделирование влияния и распространения отдельных видов химических загрязнений, проведение мониторинга по конкретному параметру). Более приближёнными к комплексному анализу территории являются ГИС ООПТ различных уровней, но подобных работ единицы и общего подхода для них не разработано (Материалы., 2002, Проблемы.,2002). Большей частью региональные ГИС используются для решения экономических и социальных задач.

    Основываясь на необходимости создания региональных ГИС на территории РФ. в Калужской области реализуется областная целевая программа «Создание географической информационной системы Калужской области» для совершенствования систем учёта, оценки и потенциалов экономического развития области, в том числе использования и охраны природных ресурсов. В конце лета текущего года создан ГИС-центр в городе Калуге. ГИС Калужской области и города Калуги обязательно должны включать экологическую составляющую для рационального и эффективного управления социально-экономическим развитием области и города. При этом данные, которые наполняют блок «Экология» должны быть максимально достоверны, и получены от специалистов в конкретной области знаний в результате проведения специальных исследований. Необходимость проведения данной работы заключается в том, чтобы проанализировать и обосновать особенности и преимущества использования технологий ГИС в экологических исследованиях и включение результатов этих исследований в единое информационное пространство для формирования как можно более полной оценки состояния территории Калужской области и города Калуги. Только на основе таких оценок возможно эффективное и рациональное управление качеством окружающей среды.

    Цель и задачи исследования. Основная цель работы -изучение особенностей применения ГИС-технологий для региональных и локальных экологических исследований различной тематики на территории Калужской области. Для достижения цели были поставлены следующие задачи:

    1) Провести анализ использования ГИС-технологий и существующих методик обработки и представления экологической информации в экологических исследованиях на локальном и региональном уровнях.

    2) Создать слой квартальной застройки города Калуги как необходимую основу для геокодирования данных экологических исследований.

    3) Изучить особенности ведения биологических кадастров с применением ГИС-технологий на примере создания БД и связанных электронных карт по распространению редких и исчезающих видов живых организмов, занесённых в Красную книгу Калужской области и по распространению древесных и кустарниковых растений на улицах города Калуги.

    4) Проанализировать возможности одновременного совместного использования картографических слоев, характеризующих распространение отдельных редких и исчезающих видов грибов, растений и животных для оценки территорий Калужской области в среде ГИС.

    5) Проанализировать возможности использования картографического слоя и связанной БД описывающих распространение и характеристики древесных и кустарниковых растений на улицах города Калуги для целей управления работ по озеленению в среде ГИС.

    6) На основе внедрённых в среду ГИС данных биоиндикационных исследований провести картографический анализ основных тенденций в пространственной и временной динамике распределения показателя стабильности развития живых организмов на территориях города Калуги и Калужской области.

    7) Выявить и проанализировать возможности использования ГИС-технологий как инструмента для проведения сравнительного анализа разнородных экологических характеристик в пределах изучаемой территории и возможности применения результатов комплексного анализа экологической информации в ГИС для принятия решений в области управления качеством окружающей среды.

    Научная новизна работы. Впервые создан целостный блок ГИС («Красная книга Калужской области»), включающий электронные карты и связанные БД по распространению редких и исчезающих видов грибов, растений и животных на территории Калужской области.

    Впервые в среде ГИС использована БД, включающая специфические биологические характеристики древесных и кустарниковых растений на улицах города по данным натурных исследований специалистов-биологов и создана связанная карта месторасположений объектов кадастра.

    Получены новые данные о пространственно-временной динамике качества окружающей среды Калужской области по стабильности развития живых организмов в период 2000-2006 годы. Эти данные подтверждают выявленные ранее общие тенденции динамики качества среды, определяемого системой биомониторинга области.

    Впервые проведён сравнительный площадной анализ качества окружающей среды по показателю стабильности развития древесных растений и по распределению показателя состояния древесных и кустарниковых растений на территории Ленинского округа города Калуги.

    Впервые проведён сравнительный площадной анализ качества окружающей среды по показателю стабильности развития берёзы повислой и по распределению редких и исчезающих видов грибов, растений и животных на территории Калужской области.

    Практическая значимость работы. Слой квартальной застройки используется как основа для поадресной привязки в проведении целого ряда экологических исследований на территории города Калуги: медико-экологическое картографирование, кадастр зелёных насаждений на улицах города Калуги, биоиндикационные исследования и другие.

    Картографическое представление и связанные БД кадастра древесных и кустарниковых растений улиц города Калуги используются в управлении работами по озеленению города с минимальными экономическими затратами и максимальной научной обоснованностью. Представление данных в ГИС так же позволяет вести мониторинг численности и состояния объектов озеленения с оперативным отображением информации. Данные используются в Управлении хозяйством управы города Калуги, Комитетом по охране окружающей среды и природным ресурсам, Калужской городской Думой.

    Блок электронных карт и БД «Красная книга Калужской области» используется в практике деятельности государственной экологической экспертизы и при оценке воздействия планируемой хозяйственной деятельности на территории Калужской области. Кроме того, эта информация благодаря ГИС-технологиям открывает новые возможности для биоэкологических исследований. позволяя интегрировать разнородную информацию. Всего создано 578 слоев (по количеству видов, занесенных в Красную книгу Калужской области) распространения редких и исчезающих видов грибов, растений и животных на территории Калужской области.

    Создано более 50 электронных карт и связанных БД по результатам биоиндикационных исследований на локальном и региональном уровнях. Эти электронные карты и БД в ГИС используются в работе Лаборатории биоиндикации КГПУ им. К.Э.Циолковского, Калужского городского комитета по охране окружающей среды, Центра экологической политики России, а так же при проведении школьного биомониторинга разного масштаба.

    Отдельные исследования были поддержаны грантами Центра Исследования Международного Развития IDRC (Канада) № 10051805-154 и РГНФ.

    Разработанные алгоритмы и методики создания тематических электронных карт и БД и использования ГИС-технологий в экологических исследованиях могут быть рекомендованы как типовые при аналогичных исследованиях как на территориях города Калуги и Калужской области, так и в других городах и субъектах Российской Федерации.

    Заложена основа комплексного экологического анализа посредством ГИС-технологий на территориях города Калуги и Калужской области.

    Апробация работы. Основные положения представляемой диссертационной работы и результаты отдельных научных исследований были представлены на: межрегиональной научно-практической конференции «Река Ока - третье тысячелетие» (Калуга, 2001), региональной студенческой научной конференции «Применение кибернетических методов в решении проблем общества XXI века» (Обнинск, 2003), международной научно-практической конференции «Эколого-биологические проблемы водоемов бассейна реки Днепр» (Украина, Новая Каховка, 2004), региональной научной конференции «Техногенные системы и экологический риск» (Обнинск, 2005), XII Всероссийской конференции «Муниципальные геоинформационные системы» (Обнинск, 2005) международной молодежной конференции («TUNZA, Дубна +2») «Молодежь за безопасную окружающую среду для устойчивого развития» (г. Дубна, Московская область, 2005 г.), конференция с международным участием «Экология человека» (Архангельск, 2004 г.)

    Объем и структура диссертации. Диссертационная работа состоит из введения, пяти глав и заключения, содержит список литературы из 155 наименований на русском и английском языках. Объём диссертации составляет 159 страниц машинописного текста, включающих 48 рисунков и 6 таблиц.

    Заключение Диссертация по теме "Геоэкология", Смирницкая, Наталья Николаевна

    1. На современном этапе развития ГИС необходимо создание новых методик и внедрение достоверных результатов экологических исследований в блоки экологической информации локальных и региональных ГИС.

    2. Созданный слой квартальной застройки является необходимой основой для объединения данных всех экологических исследований в городе Калуге, как наиболее приближённый к математической основе, и является визуальным отображением пространства города.

    3. Созданные в ГИС биологические кадастры регионального и муниципального уровней открывают новые возможности для эффективного и экономичного использования данных - создания тематических электронных карт как по отдельным параметрам, так и для комплексного сравнения первичной информации.

    4. Совместное использование созданных 578 картографических слоев распространения редких и исчезающих видов грибов, растений и животных, занесённых в «Красную книгу Калужской области» в среде ГИС позволяет оценивать не только характеристики состояния отдельных видов и их групп, но и судить о состоянии территории анализируемых участков по плотности заселения редкими видами живых организмов.

    5. Входящие в блок «Экология» Калужской городской ГИС картографический слой и связанная БД характеризующие распространение и состояние древесных и кустарниковых растений на улицах города Калуги позволяет оценивать зелёные насаждения города по 6 параметрам (вид, высота, окружность, возраст, состояние, рекомендации специалистов), что значительно сокращает материальные и временные затраты по рациональному управлению работ по озеленению.

    6. Сравнительный картографический анализ данных исследований по распределению показателей состояния древесных и кустарниковых растений и по показателю стабильности развития древесных растений на территории Ленинского округа города Калуга за 2004 год, и данных оценки качества окружающей среды по коэффициенту стабильности развития берёзы повислой на территории Калужской области за 1997-2005 годы, показал, что ГИС-технологии являются оптимальным инструментом для изучения динамики анализируемых параметров. Выявлено совпадение в пространственном распределении показателей комфортности окружающей среды для произрастания и существования растительных организмов по состоянию объектов озеленения и по стабильности развития древесных растений. Выявлена многолетняя тенденция усреднения значений коэффициента флуктуирующей асимметрии и сохранения основных контуров благоприятного и неблагоприятного качества окружающей среды на территории Калужской области.

    7. Комплексные исследования территории Калужской области (включающие в себя сравнение качества среды по разным параметрам - стабильность развития березы, гидробиологической индикации, линейной нагрузке, распространению редких и исчезающих видов животных, растений и грибов) показывают, что ГИС-технологии позволяют приблизиться к геосистемной оценке анализируемой территории, благодаря одной из главных функций ГИС - объединению разнородной информации на основе пространственной локализации.

    8. Результаты комплексного анализа экологической информации в ГИС (электронные карты по нескольким параметрам, сравнительные карты динамики экологических процессов) являются готовой основой для принятия решений в области управления качеством окружающей среды.

    Опыт комплексных географических исследований и системного тематического картографирования позволил геоинформационному картографированию занять ведущие позиции в развитии картографической науки и производства.

    Сопоставление разновременных и разнотематических карт позволяет перейти к прогнозам на основе выявленных взаимосвязей и тенденций развития явлений и процессов. Прогноз по картам позволяет прогнозировать и современные, но еще не известные явления, например, прогнозы погоды или неизвестные полезные ископаемые.

    В основе прогноза лежат картографические экстраполяции, трактуемые как распространение закономерностей, полученных в ходе картографического анализа какого-либо явления, на неизученную часть этого явления, на другую территорию или на будущее время. Картографические экстраполяции, как и любые другие (математические, логические), не универсальны. Их достоинство в том, что они хорошо приспособлены для прогнозирования и пространственных, и временных закономерностей. В практике прогнозирования по картам широко применяют также известные в географии методы аналогий, индикации, экспертные оценки, расчет статистических регрессий и др.

    Литература:

    1. Трифонова Т.А., Мищенко Н.В., Краснощеков А.Н. Геоинформационные системы и дистанционное зондирование в экологических исследованиях: Учебное пособие для вузов. - М., 2005. – 352 с.

    2. Стурман В.И. Экологическое картографирование: Учебное пособие. – Москва, 2003.

    Тема 14. Содержание и методы составления экологических карт. План:

    1. Картографирование атмосферных проблем.

    2. Картографирование загрязнения вод суши.

    3. Качественные и количественные оценки экологических ситуаций.

    1. Картографирование атмосферных проблем

    Атмосфера как наиболее динамичная среда характеризуется сложной пространственно-временной динамикой уровней содержания примесей. В каждый данный момент времени уровень загрязненности атмосферы над некоторой территорией или в той или иной точке определяется балансом по отдельным поллютантам и их совокупности. В приходной части баланса находятся:

    ♦ поступление загрязняющих веществ от совокупности техногенных и естественных источников в пределах рассматриваемой территории;

    ♦ поступление загрязняющих веществ от источников за пределами рассматриваемой территории, в том числе отдаленных (дальний перенос);

    ♦ образование загрязняющих веществ в результате вторичных химических процессов, протекающих в самой атмосфере.

    В расходной части баланса находятся:

    ♦ вынос загрязняющих веществ за пределы рассматриваемой территории;

    ♦ осаждение загрязняющих веществ на земную поверхность;

    ♦ разрушение загрязняющих веществ в результате процессов самоочищения.

    Факторы интенсивности осаждения и самоочищения для разных веществ в значительной степени совпадают. Поэтому концентрации разных веществ обычно меняются относительно согласованно, подчиняясь одним и тем же временным и пространственным закономерностям.

    Поступление загрязняющих веществ от естественных и техногенных пылящих источников усиливается при усилении ветра (в сочетании с наличием незакрепленных поверхностей), при вулканических процессах.

    Таким образом, картографирование загрязнения атмосферы складывается из:

    ♦ картографирования потенциала загрязнения атмосферы;

    ♦ картографирования источников загрязнения;

    ♦ картографирования уровней загрязнения.

    Введение

    1.1 Деградация среды обитания

    1.2 Загрязнение

    1.3 Охраняемые территории

    1.4 Неохраняемые территории

    1.6Мониторинг

    2.2 Функциональные возможности системы

    2.3 Методы получения комплексной оценки

    Заключение

    Литература

    геоинформационный карта нефтегазовый мониторинг


    Введение

    Во всем мире проблемам охраны окружающей среды сейчас уделяется повышенное внимание. И это не удивительно. Бурное развитие хозяйственной деятельности людей создало все предпосылки реальной возможности экологического кризиса. В этой связи большое значение приобретает направление, связанное с количественной оценкой антропогенных воздействий на окружающую среду, созданием систем комплексной оценки состояния экологической обстановки, а также моделированием и прогнозированием развития ситуации. Создание подобных систем в настоящее время невозможно без использования современных компьютерных инструментов. Одним из важных инструментов являются ГИС-технологии.

    Оценка состояния сложных природных объектов в окружающей среде подразумевает всесторонний анализ воздействия различных факторов. Получение комплексных оценок затруднено многообразием характеристик объекта, разнотипностью доступной информации, что повышает актуальность задачи обеспечения метрологической сопоставимости разнородных данных.


    1. Роль и место ГИС в природоохранных мероприятиях

    1.1 Деградация среды обитания

    ГИС с успехом используется для создания карт основных параметров окружающей среды. В дальнейшем, при получении новых данных, эти карты используются для выявления масштабов и темпов деградации флоры и фауны. При вводе данных дистанционных, в частности спутниковых, и обычных полевых наблюдений с их помощью можно осуществлять мониторинг местных и широкомасштабных антропогенных воздействий. Данные об антропогенных нагрузках целесообразно наложить на карты зонирования территории с выделенными областями, представляющими особый интерес с природоохранной точки зрения, например парками, заповедниками и заказниками. Оценку состояния и темпов деградации природной среды можно проводить и по выделенным на всех слоях карты тестовым участкам .

    1.2 Загрязнение

    С помощью ГИС удобно моделировать влияние и распространение загрязнения от точечных и неточечных (пространственных) источников на местности, в атмосфере и по гидрологической сети. Результаты модельных расчетов можно наложить на природные карты, например карты растительности, или же на карты жилых массивов в данном районе. В результате можно оперативно оценить ближайшие и будущие последствия таких экстремальных ситуаций, как разлив нефти и других вредных веществ, а также влияние постоянно действующих точечных и площадных загрязнителей .


    1.3Охраняемые территории

    Еще одна распространенная сфера применения ГИС - сбор и управление данными по охраняемым территориям, таким как заказники, заповедники и национальные парки. В пределах охраняемых районов можно проводить полноценный пространственный мониторинг растительных сообществ ценных и редких видов животных, определять влияние антропогенных вмешательств, таких как туризм, прокладка дорог или ЛЭП, планировать и доводить до реализации природоохранные мероприятия. Возможно выполнение и многопользовательских задач, таких как регулирование выпаса скота и прогнозирование продуктивности земельных угодий. Такие задачи ГИС решает на научной основе, то есть выбираются решения, обеспечивающие минимальный уровень воздействия на дикую природу, сохранение на требуемом уровне чистоты воздуха, водных объектов и почв, особенно в часто посещаемых туристами районах .

    1.4Неохраняемые территории

    Региональные и местные руководящие структуры широко применяют возможности ГИС для получения оптимальных решений проблем, связанных с распределением и контролируемым использованием земельных ресурсов, улаживанием конфликтных ситуаций между владельцем и арендаторами земель. Полезным и зачастую необходимым бывает сравнение текущих границ участков землепользования с зонированием земель и перспективными планами их использования. ГИС обеспечивает также возможность сопоставления границ землепользования с требованиями дикой природы. Например, в ряде случаев бывает необходимым зарезервировать коридоры миграции диких животных через освоенные территории между заповедниками или национальными парками. Постоянный сбор и обновление данных о границах землепользования может оказать большую помощь при разработке природоохранных, в том числе административных и законодательных мер, отслеживать их исполнение, своевременно вносить изменения и дополнения в имеющиеся законы и постановления на основе базовых научных экологических принципов и концепций .

    1.5Восстановление среды обитания

    ГИС является эффективным средством для изучения среды обитания в целом, отдельных видов растительного и животного мира в пространственном и временном аспектах. Если установлены конкретные параметры окружающей среды, необходимые,например, для существования какого-либо вида животных, включая наличие пастбищ и мест для размножения, соответствующие типы и запасы кормовых ресурсов, источники воды, требования к чистоте природной среды, то ГИС поможет быстро подыскать районы с подходящей комбинацией параметров, в пределах которых условия существования или восстановления численности данного вида будут близки к оптимальным. На стадии адаптации переселенного вида к новой местности ГИС эффективна для мониторинга ближайших и отдаленных последствий предпринятых мероприятий, оценки их успешности, выявления проблем и поиска путей по их преодолению .

    1.6Мониторинг

    По мере расширения и углубления природоохранных мероприятий одной из основных сфер применения ГИС становится слежение за последствиями предпринимаемых действий на локальном и региональном уровнях. Источниками обновляемой информации могут быть результаты наземных съемок или дистанционных наблюдений с воздушного транспорта и из космоса. Использование ГИС эффективно и для мониторинга условий жизнедеятельности местных и привнесенных видов, выявления причинно-следственных цепочек и взаимосвязей, оценки благоприятных и неблагоприятных последствий предпринимаемых природоохранных мероприятий на экосистему в целом и отдельные ее компоненты, принятия оперативных решений по их корректировке в зависимости от меняющихся внешних условий .


    2. Комплексная оценка окружающей природной среды

    2.1 Базовые основы системы комплексной оценки окружающей природной среды

    Геоинформационная система комплексной оценки, моделирования и прогнозирования состояния окружающей природной среды (ОПС)а базируется на топографической основе с единой системой координат, на базах данных, имеющих единую организацию и структуру и являющихся хранилищем всей информации об анализируемых объектах, на наборе программных модулей для получения оценок по ранее разработанным алгоритмам . Система позволяет:

    · осуществлять сбор, классификацию и упорядочивание экологической информации;

    · исследовать динамику изменения состояния экосистемы в пространстве и во времени;

    · по результатам анализа строить тематические карты;

    · моделировать природные процессы в различных средах;

    · оценивать ситуацию и прогнозировать развитие экологической обстановки.

    Часть работ велась совместно с Невско-Ладожским бассейновым водным управлением, зона действия которого распространяется на Северо-Западный регион и включает Санкт-Петербург и Ленинградскую область, Новгородскую и Псковскую области, республику Карелия и Калининградскую область. Соответственно, вся информация собрана и систематизирована для этого региона. Топографическая основа системы комплексной оценки служит для визуализации результатов исследований и пространственного анализа (рис. 1).


    Рис. 1. Топооснова системы комплексной оценки.

    Основной информационной единицей топоосновы являются листы цифровых карт масштаба 1:200 000. Топографическая основа представляет собой набор структурированных в виде отдельных слоев данных о местности: реки, озера, дороги, леса, посты контроля и т.д.

    База данных системы комплексной оценки включает:

    · базу результатов контрольных измерений;

    · базу характеристик природных объектов;

    · базу характеристик источников загрязнения;

    · нормативную базу.

    База контрольных измерений является основой системы мониторинга состояния окружающей среды, позволяющей оперативно оценивать экологическую ситуацию в заданном районе и представлять ее на карте .

    Система позволяет исследовать динамику загрязнения в пространстве и во времени, в том числе:

    · проводить анализ в заданной точке для выбранных показателей по датам наблюдений (временной анализ);

    · получать нормированные оценки;

    · формировать усредненные оценки по заданному показателю по перечню контрольных постов (пространственный анализ) и строить тематические карты (рис. 2);

    · рассчитывать интегральные оценки.


    Рис. 2. Пространственный анализ состояния водного объекта.

    2.2Функциональные возможности системы

    Единая база природных объектов и источников загрязнения обеспечивает возможность моделирования распространения вредных веществ в воздушной и водной средах с целью исследования сложившейся обстановки и выработки рекомендаций по ликвидации последствий кризисных ситуаций и по рациональному природопользованию. Модели распространения загрязняющих веществ в воде и в воздухе учитывают технологические характеристики предприятий (экологический паспорт), географическое местоположение, метеорологические условия .

    Реализована модель распространения примеси в воздухе, основанная на методике ГГО, называемая ОНД-86. Результатом работы модели является поле концентраций, представленное в виде слоя ГИС (рис. 3).

    Рис. 3. Моделирование распространения примеси в воздухе.

    Для водотоков реализована модель конвективно-диффузионного переноса загрязняющих веществ. Моделирование распространения загрязняющих веществ осуществляется от группы водовыпусков в пределах участка или целого водного бассейна с учетом их специфики (рис. 4). Рассчитывается предельно допустимый сброс сточных вод в водные объекты. Результатом работы модели также является поле концентраций, импортируемое в ГИС.

    Рис. 4. Моделирование распространения примеси в водотоке.

    Комплексная оценка состояния сложных природных объектов строится на основе результатов контроля характеристик в различных средах (измерений уровня радиации, концентрации примеси вредных веществ, площади загрязнения и др.), результатов обследований и экспертизы, а также результатов моделирования различных ситуаций техногенного или природного происхождения. Это повышает актуальность задачи объединения количественных и качественных характеристик, соблюдения требований единства измерений.

    2.3Методы получения комплексной оценки

    В созданной системе решена задача объединения разнородных данных для получения комплексных оценок состояния объектов окружающей природной среды на единой метрологической основе . Разработаны методы построения нормированных шкал с целью объединения различных оценок, учитывающие характеристики достоверности и степени участия каждого фактора. За нормированную шкалу принята шкала с равными отрезками и условными отношениями: 0-1 – значительно ниже нормы (ЗНН); 1-2 – ниже нормы (НН); 2-3 – норма (Н); 3-4 – выше нормы (ВН); 4-5 – значительно выше нормы (ЗВН).

    Для оценки качеств результатов контрольных измерений используется нормирование относительно предельно допустимой концентрации (ПДК). Плоскость соответствия нормированных значений контрольных измерений и качественных оценок изображена на рис. 5.

    Рис. 5. Плоскость соответствия нормированных значений и качественных оценок.

    Каждый результат измерений представляет собой случайную величину, истинное значение которой находится в интервале x*=x’± ks . В этом случае принятие того или иного значения контролируемой величины на нормированной шкале качественных отношений может быть определено как вероятность нахождения значения измеряемой величины в соответствующем интервале значений концентраций. Вероятность принятия того или иного значения качества может быть определена как:

    Выбор граничных значений (C i) зависит от класса опасности вещества и региона обследования, что объясняется конкретной экологической обстановкой и существующей нормативной базой.

    В случае, когда для оценки отдельных объектов ОПС используются сложные характеристики, значение некоторого обобщенного показателя определяет качественное значение контролируемой характеристики. Сложность состоит в том, что качественные шкалы для разных сред и методик различны. В этом случае задача нормирования сложных оценок сводится к приведению таких шкал к нормированной .

    В программной системе реализованы алгоритмы получения качественных оценок по результатам контрольных измерений, учитывающие существующие стандартные методики для воздушной и водной сред (рис. 6). Осуществлено приведение различных качественных шкал к нормированной.

    Рис. 6. Оценка состояния водной среды.

    В силу малочисленности данных химического анализа часто, наряду с результатами контрольных измерений, используются результаты обследований, опросов и экспертных оценок. В программной системе создан модуль, реализующий получение и обработку экспертных оценок.

    При обработке результатов обследований значение каждой величины, также как результаты контрольных измерений, определяет степень загрязненности объекта и может быть связано с нормированными характеристиками объекта. Результаты обработки экспертных оценок суммируются в нормированной шкале. При этом оценка, соответствующая каждому признаку, должна быть приведена к нормированной характеристике å р k =1. Результаты имеют географическую привязку и могут быть нанесены на карту (рис. 7).


    Рис. 7. Экспертные оценки.

    Комплексная оценка состояния объектов ОПС получается в результате объединения данных разного типа (результатов контрольных измерений в разных средах, результатов моделирования, обследования и экспертных оценок). При этом задача объединения превращается в задачу суммирования характеристик различных оценок в нормированной качественной шкале.

    Следует учитывать, что если комплексная оценка определяется на основе объединения большого числа оценок, имеющих различное распределение в нормированной шкале, то в результате объединения таких оценок велика вероятность получить равномерное распределение, при котором невозможно вынести суждение о качественной оценке состояния объекта.

    В связи с этим предлагается использовать следующий метод объединения однотипных оценок. Для каждой группы оценок, собранных, например, по средам (воздух, вода, почва) или по виду их получения (контрольные измерения, экспертные оценки, результаты моделирования) следует производить сортировку в соответствии с максимальным значением каждого качества и выбирать наиболее критичные оценки. При этом, в зависимости от поставленной задачи, алгоритм выбора критических оценок также может быть различным. Например, для оценки аварийной ситуации следует выбирать показатели, у которых максимум оценки принимает значение ЗВН (значительно выше нормы), для обычных условий следует выбирать показатели, имеющие максимум в диапазоне от Н (норма) до ЗВН.

    Сложные оценки состояния объектов окружающей природной среды могут быть получены путем объединения разнотипных данных, например, результатов контрольных измерений и визуального обследования прибрежной территории. При формировании таких оценок необходимо учитывать важность каждой используемой характеристики.

    Такие оценки представляют собой комплексную характеристику, полученную путем суммирования простых оценок с учетом их свойств в пределах групп воздействия, то есть:

    где: * - оператор суммирования, x i * - простая оценка, входящая в множество важных характеристик I s , p дi - оценка степени доверия и g уi - оценка степени участия x i * .

    Степень доверия характеризует надежность используемой оценки и зависит от способа ее получения. Степень участия определяет вес используемой характеристики при формировании сложной оценки качества объекта экосистемы. Использование коэффициента участия исключает возможность получения равновероятной характеристики результата в случае суммирования большого числа характеристик и позволяет эксперту получать различные оценки в зависимости от поставленной задачи.

    Комплексная оценка состояния объектов ОПС представляет собой характеристику, полученную путем суммирования простых и сложных оценок с учетом их свойств


    где: * - оператор суммирования, x i * - простая оценка, входящая в множество важных характеристик I 0 , S i * - сложная оценка, полученная на основании использования стандартных методик объединения однотипных данных или согласно формуле (2) для данных разного типа.

    Информационная среда получения комплексной оценки обеспечивает объединение и использование распределенной информации, а ГИС технология – ее обработку в соответствии с географической или административной привязкой (рис. 8).

    Рис. 8. Информационная среда получения комплексной оценки.

    Для формирования сложных оценок на основании однотипных данных выбирается соответствующий слой (с необходимым районом и параметрами) и осуществляется обработка данных в соответствии со стандартными методиками. В случае, когда сложная оценка получается при суммировании данных разного типа, формируется проект из нескольких слоев. Каждому слою назначается коэффициент участия и формируются сложные оценки. Получаемые сложные оценки также являются слоем ГИС. Путем формирования проектов из простых и сложных оценок, а также результатов моделирования, могут быть получены оценки по средам (воздух, вода, почва и т.д.), которые также являются слоями ГИС. Объединив в единый проект оценки по средам, мы получим комплексную оценку состояния объекта на основании разнородных данных.


    3. Использование ГИС-технологий для решения проблем охраны окружающей среды в нефтегазовой отрасли

    Осознавая потенциальную экологическую опасность предприятий нефтегазового комплекса, в частности российские нефтяные компании провозгласили в качестве одного из приоритетов сохранение экологического равновесия в зонах деятельности своих предприятий. Однако для реального улучшения экологического состояния на территории деятельности нефтегазового комплекса (НГК) требуются громадные инвестиции в технологический комплекс нефтедобычи, в первую очередь, для внедрения природоохранных технологий. В связи с этим для оптимизации экономических затрат предприятий НГК могут быть успешно применены современные средства геоинформационных технологий. Ниже излагается опыт, накопленный в Томском научном центре СО РАН в разработке и использовании ГИС для компьютерного выбора экологически приемлемых природоохранных технологий на основе анализа состояния окружающей среды .

    Разработанная ГИС включает следующие компоненты:

    · база данных об экологическом состоянии,

    · база данных о природоохранных технологиях,

    · комплекс программных средств анализа состояния территории и выбора природоохранных технологий.

    Задача комплексного анализа состояния окружающей природной среды и выбора на основе этого анализа природоохранных технологий направлена на достижение нормативного качества природной среды. Программный комплекс анализа состояния окружающей среды позволяет выявлять территориальные зоны загрязнения и прогнозировать динамику изменения границ этих зон на основе анализа сценариев экономического развития предприятий. Результаты расчетов зон загрязнения воздуха наглядно иллюстрируются на компьютерных картах (рис.9) с помощью средств ГИС. При этом для расчета величин приземной концентрации вредных веществ в атмосферном воздухе, содержащихся в выбросах предприятий, использована известная методика ОНД-86. Расчет производится для наиболее неблагоприятных метеорологических условий. Исходными данными для прогноза загрязнения атмосферы и определения зон повышенного загрязнения служили экологические паспорта предприятий и другие информационные материалы природоохранных органов .

    Рис.9. Прогноз увеличения площади зоны загрязнения воздуха от сжигания попутного газа в факелах с ростом объемов добычи.

    Разработанные средства ГИС - технологий позволяют достигать нормативного качества природной среды на территории деятельности нефтегазового комплекса с помощью моделирования изменений в ее состоянии за счет применения современных природоохранных технологий, выбираемых из базы данных ГИС. Следовательно, применение ГИС-технологий позволяет выбирать экологически приемлемые и экономически целесообразные природоохранные технологии на основе комплексного анализа загрязнения воды, воздуха и почвы. Ниже (рис.10) приведен пример компьютерного моделирования, который иллюстрирует возможность выбора из базы данных ГИС подходящих технологий очистки сточных вод с целью улучшения качества речной воды на территории нефтяных месторождений .

    Рис.10. Исходное состояние загрязнения рек на территории нефтяных месторождений сбросами сточных вод.

    Перспективы расширенного применения ГИС- технологий для решения комплексных проблем охраны окружающей среды в нефтегазовой отрасли связаны с развитием предлагаемого подхода к улучшению экологического состояния территории на основе использования аэрокосмической информации.


    Заключение

    Таким образом можно смело утверждать, что ГИС имеет определенные характеристики, которые с полным правом позволяют считать эту технологию основной для целей обработки и управления информацией. С появлением ГИС возможность решения такой задачи как анализ дистанционных данных для их полноценного использования в повседневной жизни, стала реальностью, так как эта технология позволяет собрать воедино и проанализировать различную, на первый взгляд мало связанную между собой информацию, получить основанный на массовом фактическом материале обобщенный взгляд на него, количественно и качественно проанализировать взаимные связи между характеризующими его параметрами и происходящими в нем процессами. ГИС с успехом используется для наблюдения состояния окружающей среды, а также для создания карт основных параметров окружающей среды.

    Разработанная на базе ArcGIS ArcInfo 9.1 геоинформационная система комплексной оценки, моделирования и прогнозирования служит основой для построения многоуровневых информационно-измерительные систем (ИИС) и может быть использована при проектировании территорий и для принятия управляющих решений по охране окружающей среды и рациональному природопользованию.

    Перспективы расширенного применения ГИС-технологий для решения комплексных проблем охраны окружающей среды в различных отраслях связаны с развитием предлагаемого подхода к улучшению экологического состояния территории на основе использования информации полученной с помощью современных технологий, в частности с помощью аэрокосмической информации.


    Литература

    1. Алексеев В.В., Куракина Н.И. ИИС мониторинга. Вопросы комплексной оценки состояния ОПС на базе ГИС // журнал ГИС-Обозрение.-2000.-№19.

    2. Алексеев В.В., Гридина Е.Г., Кулагин В.П., Куракина Н.И. Оценка качества сложных объектов на базе ГИС // Сборник трудов Международного симпозиума "Надежность и качество 2003". - Пенза 2003.

    3. Алексеев В.В., Куракина Н.И., Желтов Е.В. Система моделирования распространения загрязняющих веществ и оценки экологической ситуации на базе ГИС // журнал "Информационные технологии моделирования и управления", №5(23), Воронеж, 2005.

    4. Алексеев В.В., Куракина Н.И., Орлова Н.В., Геоинформационная система мониторинга водных объектов и нормирования экологической нагрузки // журнал ArcReview.-2006.-№1(36).

    5. Алексеев В.В., Гридина Е.Г., Куракина Н.И. Вопросы обеспечения единства измерений при формировании комплексных оценок // Сборник трудов Международного симпозиума "Надежность и качество 2005". - Пенза 2005.

    6. Издание Дата+ ArcReview. - http://www.dataplus.ru.

    Экологические проблемы часто требуют незамедлительных и адекватных действий, эффективность которых напрямую связана с оперативностью обработки и представления информации. При комплексном подходе, характерном для экологии, обычно приходится опираться на обобщающие характеристики окружающей среды, вследствие чего, объемы даже минимально достаточной исходной информации, несомненно, должны быть большими. В противном случае обоснованность действий и решений вряд ли может быть достигнута. Однако простого накопления данных тоже, к сожалению, недостаточно. Эти данные должны быть легко доступны, систематизированы в соответствии с потребностями. Хорошо, если есть возможность связать разнородные данные друг с другом, сравнить, проанализировать, просто просмотреть их в удобном и наглядном виде, например, создав на их основе необходимую таблицу, схему, чертеж, карту, диаграмму. Группировка данных в нужном виде, их надлежащее изображение, сопоставление и анализ целиком зависят от квалификации и эрудированности исследователя, выбранного им подхода интерпретации накопленной информации. На этапе обработки и анализа собранных данных существенное, но отнюдь не первое, место занимает техническая оснащенность исследователя, включающая подходящие для решения поставленной задачи аппаратные средства и программное обеспечение. В качестве последнего во всем мире все чаще применяется современная мощная технология географических информационных систем.

    ГИС имеет определенные характеристики, которые с полным правом позволяют считать эту технологию основной для целей обработки и управления информацией. Средства ГИС намного превосходят возможности обычных картографических систем, хотя естественно, включают все основные функции получения высококачественных карт и планов. В самой концепции ГИС заложены всесторонние возможности сбора, интеграции и анализа любых распределенных в пространстве или привязанных к конкретному месту данных. Если необходимо визуализировать имеющуюся информацию в виде карты, графика или диаграммы, создать, дополнить или видоизменить базу данных, интегрировать ее с другими базами - единственно верным путем будет обращение к ГИС. В традиционном представлении возможные пределы интеграции разнородных данных искусственно ограничиваются. Близким к идеалу считают, например, возможность создания карты урожайности полей путем объединения данных о почвах, климате и растительности. ГИС позволяет пойти значительно дальше. К вышеприведенному набору данных можно добавить демографическую информацию, сведения о земельной собственности, благосостоянии и доходах населения, объемах капитальных вложений и инвестиций, зонировании территории, состоянии хлебного рынка и т.д. В результате появляется возможность напрямую определить эффективность запланированных или проводящихся мероприятий по сохранению природы, их влияние на жизнь людей и экономику сельского хозяйства. Можно пойти еще дальше и, добавив данные о распространении заболеваний и эпидемий, установить, есть ли взаимосвязь между темпами деградации природы и здоровьем людей, определить возможность возникновения и распространения новых заболеваний. В конечном счете, удается достаточно точно оценить все социально-экономические аспекты любого процесса, например сокращения площади лесных угодий или деградации почв.



← Вернуться

×
Вступай в сообщество «shango.ru»!
ВКонтакте:
Я уже подписан на сообщество «shango.ru»